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1. Introduction

One of the most striking consequences of supersymmetry is an improvement in the ultra-

violet behavior of quantum field theories. This feature provides one of the main motivations

for the study of supersymmetric models in connection with the resolution of the hierarchy

problem.
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The maximally supersymmetric N = 4 Yang-Mills [1] theory is particularly remarkable

in that it is ultra-violet finite [2 – 4], therefore representing an example of a four-dimensional

quantum field theory which is conformally invariant at the quantum level. The discovery

of the special properties of the N = 4 supersymmetric Yang-Mills (SYM) theory has led to

extensive investigations aimed at identifying field theories with the same finiteness prop-

erties, but a smaller amount of supersymmetry [5]. A special class of such theories are

those obtained as exactly marginal deformations of N = 4 SYM. These were classified

in [6], where it was argued that there exists a two (complex) parameter family of such

deformations. In this paper we shall provide a proof of finiteness, to all orders in pla-

nar perturbation theory, for a particular model in this class, which involves a single real

deformation parameter.

The existence of families of marginal deformations of N = 4 SYM has interesting

consequences in the context of the AdS/CFT correspondence [7]. In the framework of the

AdS/CFT duality the conformal symmetry of the boundary field theory is associated with

the isometry group of the dual anti-de Sitter background. Therefore marginal deformations

of N = 4 SYM should correspond to deformations of the AdS5 × S5 background which

preserve the SO(4,2) group of isometries of the AdS5 factor. This correspondence was first

considered in [8] and further studied in [9], where, by expanding the supergravity equations

around the AdS5 × S5 solution, it was found that the dimension of the space of solutions

preserving N = 1 supersymmetry as well as the SO(4,2) isometry group is the same as

that of the space of marginal deformations of N = 4 SYM [6]. An exact supergravity

solution dual to a N = 1 superconformal field theory with a U(1)×U(1) flavor symmetry

was constructed in [10]. The theory dual to the supergravity background of [10] belongs

to the class of marginal deformations of N = 4 SYM referred to as β-deformations, which

are characterized, in N = 1 superspace, by a superpotential of the form

W =

∫

d4x

[
∫

d2θ g hTr
(

eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2
)

+ h.c.

]

, (1.1)

where g is the standard Yang-Mills coupling and h and β are two complex deformation

parameters. In (1.1) Φ1,Φ2 and Φ3 are three N = 1 chiral superfields. Following [10] the

perturbative properties of theories in this class have been extensively studied [11 – 14].

In this paper we focus on the special case in which the superpotential (1.1) has h = 1

and β ∈ �
. We prove that this deformation of N = 4 SYM is conformally invariant in

the planar limit by showing that all the Green functions in the theory are finite. In order

to prove this result to all orders in perturbation theory we shall realize the deformation

by the introduction of new star-products acting in superspace. This will allow us to for-

mulate the theory in N = 4 light-cone superspace and to use the same arguments utilized

in [3, 4] to prove the ultra-violet finiteness of N = 4 SYM. For an introduction to light-

cone superspace, we refer the reader to [15 – 17]. The super-Poincaré and superconformal

algebras were presented in light-cone superspace in references [16 – 19]. The truncation of

supersymmetry and superfields in this context was discussed in [20, 21].

The formulation of the deformed Yang-Mills theory using star-products presents analo-

gies with the construction of non-commutative field theories [22]. However, the theory that
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Field U(1)1 U(1)2

φ1, λ1 0 −1

φ2, λ2 +1 +1

φ3, λ3 −1 0

Table 1: Flavor charges of the fields in β-deformed N = 4 Yang-Mills.

we study is an ordinary gauge theory and these analogies are purely formal. In particular,

we stress that the β-deformed Yang-Mills theory retains a non-trivial dependence on the

deformation parameter in the planar limit.

As will be explicitly shown, the proof of [3, 4] can only be applied to the deformed

model in the planar approximation. The analysis that we present is valid for arbitrary

gauge group, but the case of SU(N) is particularly interesting, since in this case the theory

is expected to be dual to the background of [10]. The all-order finiteness of the β-deformed

Yang-Mills theory in the planar limit suggests that the inclusion of string tree-level cor-

rections should not break the SO(4,2) isometries of the supergravity solution of [10]. Our

formalism does not allow us to reach any conclusion about the finiteness of the theory for

finite N and thus about the effect of string loop corrections on the dual background.

This paper is organized as follows. In sections 2 and 3 we show how to formulate

the β-deformed theory in N = 4 light-cone superspace. Section 4 presents the proof

of finiteness to all orders in perturbation theory following the N = 4 analysis of [3, 4].

Various appendices discuss aspects of the superspace calculations which are affected by the

introduction of star-products.

2. β-deformed Yang-Mills

The β-deformed Yang-Mills theory has the same field content as N = 4 Yang-Mills. In

terms of N = 1 multiplets, it consists of three chiral multiplets, (φI , λI
α), I = 1, 2, 3 in the

adjoint representation of the gauge group and a vector multiplet, (Aµ, λ4
α). The deformed

theory has only N = 1 supersymmetry and, in addition to the U(1) R-symmetry, it has a

U(1)×U(1) flavor symmetry. The three complex scalars, φI , and the three Weyl fermions,

λI
α, are charged under the U(1)×U(1) symmetry while the fields in the vector multiplet are

not. The deformation is realized simply by replacing all the commutators of charged fields

in the N = 4 Yang-Mills action by ∗-commutators [10]. The ∗-commutator is defined by

[f, g]∗ = f ∗ g − g ∗ f , (2.1)

where

f ∗ g = eiπβ(Q1
f
Q2

g−Q2
f
Q1

g)fg . (2.2)

The charges, Q1 and Q2, of the various fields with respect to the two U(1) flavor symmetries

are read off from table 1.

– 3 –
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The β-deformation breaks the N = 4 supersymmetry down to N = 1. The resulting

deformed action reads

S =

∫

d4xTr

{

1

2
FµνFµν + 2(Dµφ̄I)(DµφI) − 2i λI /Dλ̄I − 2i λ4 /Dλ̄4

−2
√

2 g
[(

εIJK [λI , λJ ]∗φ
K + εIJK[λ̄I , λ̄J ]∗φ̄K

)

− ([λ4, λI ]φ̄I + [λ̄4, λ̄I ]φ
I)

]

+g2

(

1

2
[φI , φ̄I ][φ

J , φ̄J ] − [φI , φJ ]∗[φ̄I , φ̄J ]∗

)}

. (2.3)

In this paper, we restrict ourselves to the case where the deformation parameter β is real.

This ensures that the action as written in (2.3) is real.

In the following we will formulate the theory in N = 4 light-cone superspace and

so it is convenient to use a manifestly SU(4) notation. We introduce scalar fields, ϕmn,

m,n = 1, 2, 3, 4, satisfying

ϕmn = −ϕnm , ϕ̄mn = (ϕmn)† =
1

2
εmnpq ϕpq (2.4)

and related to the φI ’s by

φI = 2ϕI4 , φ̄I = εIJK4 ϕJK , I, J,K = 1, 2, 3. (2.5)

The fermion fields are combined into

λm
α = (λI

α, λ4
α) . (2.6)

3. The light-cone formalism

We now proceed to formulate the β-deformed theory of the previous section in the light-

cone gauge. With the space-time metric (−,+,+,+), the light-cone coordinates and their

derivatives are

x± = 1√
2
(x0±x3) , x = 1√

2
(x1 + ix2) , x̄ = 1√

2
(x1 − ix2) ,

∂± = 1√
2

(

∂
∂x0 ± ∂

∂x3

)

, ∂̄ = 1√
2

(

∂
∂x1 − i ∂

∂x2

)

, ∂ = 1√
2

(

∂
∂x1 + i ∂

∂x2

)

.
(3.1)

3.1 The light-cone component description

The choice of light-cone gauge involves eliminating the unphysical degrees of freedom. In

the case of the gauge field, which splits into light-cone components, A+, A−, A and Ā this

involves setting

A− = 0 (3.2)

and using the equations of motion to solve for A+. On the light-cone, the fermions split

up as

λm
α → (χm(+), χm(−)) . (3.3)

The equations of motion allow us to eliminate χm(+). For simplicity of notation, we drop

the (−) index from the physical component, χm(−). For details regarding the derivation of

the light-cone action in the non-deformed case, we refer the reader to [15].

– 4 –
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The introduction of ∗-commutators into the action does not affect the validity of the

light-cone procedure. We stress that this point is non-trivial because of the non-linearity

of the equations of motion. In appendix A, we list the properties of the ∗-product that

ensure that this procedure remains unaffected. We find that the light-cone component

action describing β-deformed Yang-Mills is

S =

∫

d4xTr

{

2Ā¤A +
1

2
ϕ̄mn¤ϕmn − 2i√

2
χ̄m

¤

∂−
χm

+g

[

2i
∂̄

∂−
A[∂−Ā, A]∗ +

i

2

∂̄

∂−
A[∂−ϕ̄mn, ϕmn]∗ −

i

2
A[∂̄ϕ̄mn, ϕmn]∗

−
√

2
∂̄

∂−
A[χ̄m, χm]∗ +

√
2A

[

χm,
∂̄

∂−
χ̄m

]

∗
−

√
2

∂̄

∂−
χ̄m[χ̄n, ϕmn]∗ + h.c.

]

+g2

[

4
1

∂−
[∂−A, Ā]∗

1

∂−
[∂−Ā, A]∗ + [ϕmn, A]∗[ϕ̄mn, Ā]∗

+
1

∂−
[∂−Ā, A]∗

1

∂−
[∂−ϕ̄mn, ϕmn]∗ +

1

∂−
[∂−A, Ā]∗

1

∂−
[∂−ϕ̄mn, ϕmn]∗

+
1

8
[ϕmn, ϕpq]∗[ϕ̄mn, ϕ̄pq]∗ +

1

4

1

∂−
[∂−ϕ̄mn, ϕmn]∗

1

∂−
[∂−ϕ̄pq, ϕ

pq]∗

−i2
√

2
1

∂−
[χ̄m, Ā]∗[A,χm]∗ + i2

√
2

1

∂−
[χm, A]∗[ϕ̄mn, χn]∗

+i2
√

2
1

∂−
[χ̄m, Ā]∗[ϕ

mn, χ̄n]∗ + i2
√

2
1

∂−
[χ̄m, ϕmn]∗[ϕ̄np, χ

p]∗

+i2
√

2
1

∂−
[∂−A, Ā]∗

1

∂−
[χ̄m, χm]∗ + i2

√
2

1

∂−
[∂−Ā, A]∗

1

∂−
[χ̄m, χm]∗

+i
√

2
1

∂−
[∂−ϕ̄mn, ϕmn]∗

1

∂−
[χ̄p, χ

p]∗ − 2
1

∂−
[χ̄m, χm]∗

1

∂−
[χ̄n, χn]∗

]}

, (3.4)

where we use for the 1
∂
−

operator the prescription given in [3]. As in the covariant case, this

light-cone component action is obtained by replacing all the commutators in the N = 4

light-cone action [15] by ∗-commutators. Notice, however, that many of the ∗-commutators

are actually ordinary commutators because of charge neutrality.

3.2 Light-cone superspace formalism

The β-deformed theory has N = 1 supersymmetry. Despite this we will show that the

theory can be formulated in N = 4 light-cone superspace thanks to the fact that its field

content is identical to that of N = 4 Yang-Mills. This is achieved by introducing a new star

product in superspace which implements the effects of the deformation introduced into the

component action. The N = 4 light-cone superspace [15 – 21] is made up of four bosonic

coordinates, x+, x−, x, x̄, and eight fermionic coordinates,1 θm, θ̄m, m = 1, 2, 3, 4. These

will be collectively denoted by z = (x+, x−, x, x̄, θm, θ̄m).

All the degrees of freedom of the deformed theory are described by a single scalar

superfield [15]. This superfield is defined by the constraints

dm Φ = 0 , d̄n Φ̄ = 0 , (3.5)

1These Grassmann coordinates do not carry spinor indices.
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Variable U(1)1 U(1)2

θ1 0 −1

θ2 +1 +1

θ3 −1 0

θ4 0 0

Table 2: θ charges under the flavor symmetry.

as well as the “inside-out constraints”

d̄md̄nΦ =
1

2
εmnpqd

pdqΦ̄ , (3.6)

where Φ̄ is the complex conjugate of Φ. The superspace chiral derivatives in the above

expressions are

dm = − ∂

∂θ̄m

+
i√
2

θm∂−, d̄n =
∂

∂θn
− i√

2
θ̄n∂− (3.7)

and obey

{dm, d̄n} = i
√

2 δm
n ∂− . (3.8)

The superfield satisfying the constraints (3.5) and (3.6) is [15]

Φ(x, θ, θ̄) = − 1

∂−
A(y) − i

∂−
θmχ̄m(y) +

i√
2
θmθnϕmn(y)

+

√
2

6
θmθnθpεmnpqχ

q(y) − 1

12
θmθnθpθqεmnpq∂− Ā(y) , (3.9)

where y = (x, x̄, x+, y− ≡ x−− i√
2

θm θ̄m ) is the chiral coordinate and the r.h.s. of (3.9)

is understood as a power expansion around x−.

3.2.1 The superspace ?-product

The deformation in the component action is realized using the ∗-commutator. In order to

formulate the deformed theory in superspace, we introduce a new superspace ?-product

whose effect on superfields mimics the action of the ∗-product on component fields.

Star-products differ from ordinary products by phase factors. In the component for-

mulation, these phase factors were associated with the charges carried by the component

fields [10]. In superspace, we will think of these phase factors as coming from the θ’s in-

stead. This is possible because each component field in a superfield is accompanied by a

unique combination of θ’s. Based on table 1 we assign to the θ variables (the charges of

the θ̄’s are opposite to those of the θ’s) the U(1)×U(1) charges in table 2.

With this assignment the superspace ?-product is realized in terms of operators which

count the number of θ’s and θ̄’s.

We define the ?-product of two superfields, F and G, by

F ? G = F eiπβ(
←−
Q

1

F

−→
Q

2

G−←−
Q

2

F

−→
Q

1

G) G , (3.10)

– 6 –
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where the charges are the operators

−→
Q

1
= θ2

−→
∂

∂θ2
− θ3

−→
∂

∂θ3
− θ̄2

−→
∂

∂θ̄2
+ θ̄3

−→
∂

∂θ̄3
,

←−
Q

1
=

←−
∂

∂θ2
θ2 −

←−
∂

∂θ3
θ3 −

←−
∂

∂θ̄2
θ̄2 +

←−
∂

∂θ̄3
θ̄3 ,

−→
Q

2
= θ2

−→
∂

∂θ2
− θ1

−→
∂

∂θ1
− θ̄2

−→
∂

∂θ̄2
+ θ̄1

−→
∂

∂θ̄1
,

←−
Q

2
=

←−
∂

∂θ2
θ2 −

←−
∂

∂θ1
θ1 −

←−
∂

∂θ̄2
θ̄2 +

←−
∂

∂θ̄1
θ̄1 . (3.11)

The various terms in the θ-expansion of a superfield, as in (3.9), have definite U(1)×U(1)

charges. Therefore, after substituting the θ-expansion in the ?-product of two superfields,

the operators in (3.11) acting on each term in the sum produce definite phases according

to the charge assignments in table 2. This is useful as it makes the manipulation of ?-

products in superspace expressions much simpler. Notice that, although in the N = 4 light-

cone superspace formulation the phase factors introduced by the ?-products are associated

with the θm and θ̄m fermionic coordinates, the U(1)×U(1) symmetry is an ordinary flavor

symmetry. This is to be distinguished from the U(1)R symmetry which is the standard

N = 1 R-symmetry and acts both on the θ’s and θ̄’s and on the component fields.

3.2.2 The action

The light-cone superspace action for β-deformed Yang-Mills is2

S=72

∫

d4x

∫

d4θ d4θ̄ Tr

{

−2 Φ̄
¤

∂2
−

Φ + i
8

3
g

(

1

∂−
Φ̄ [Φ, ∂̄Φ]? +

1

∂−
Φ [Φ̄, ∂Φ̄]?

)

+ 2 g2

(

1

∂−
[Φ, ∂−Φ]?

1

∂−
[Φ̄, ∂−Φ̄]? + [Φ, Φ̄]? [Φ, Φ̄]?

)}

. (3.12)

Expanding the ?-commutators and performing the Grassmann integrations reproduces ex-

actly (3.4). This justifies our definition of the superspace ?-product. This deformed theory

is formulated in a manifestly N = 4 superspace, but because of the presence of the ?-

products only one supersymmetry remains unbroken. We stress that this action can be

obtained from the light-cone superspace action of [15] by just replacing ordinary commu-

tators by ?-commutators.

The action in (3.12) can be expressed purely in terms of the chiral superfield. This is

possible using the inside-out constraint in (3.6) which implies that

Φ̄ =
1

48

d̄4

∂2
−

Φ , (3.13)

where

d̄4 = εmnpq d̄md̄nd̄pd̄q . (3.14)

2This is an ordinary “commutative” field theory although the definition in (3.10) suggests the introduc-

tion of non-commutativity.

– 7 –
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Unless otherwise indicated this notation will be used in all the following formulae. Similarly

we will use

d4 = εmnpq dmdndpdq . (3.15)

The rules for partially integrating chiral derivatives in the action are modified due to the

presence of the ?-products. These modified manipulations of the chiral derivatives are

explained in appendix A.2.

From the kinetic term in the action, we read off the propagator (in this equation, we

make explicit the matrix indices on Φ)

〈(Φ)u
v(z1) (Φ)r

s(z2)〉 = 〈Φa(z1) (T a)uv Φb(z2) (T b)
r

s〉 = ∆u r
v s (z1 − z2) , (3.16)

where z = (x+, x−, x, x̄, θ, θ̄) and T a, T b are representation matrices for the Lie algebra.

The corresponding momentum-space propagator reads

∆u r
v s(k, θ(1), θ̄(1), θ(2), θ̄(2)) = tu r

v s

1

k2
µ

d4
(1) δ8(θ(1) − θ(2)) , (3.17)

where θ(1) and θ(2) denote the fermionic coordinates at points z1 and z2 respectively and

tu r
v s is a tensor whose precise structure depends on the choice of gauge group. In our cal-

culations, we use matrix notation and this tensor will not appear explicitly. The fermionic

δ-function is

δ8(θ(1) − θ(2)) =
(

θ(1) − θ(2)

)4 (

θ̄(1) − θ̄(2)

)4
. (3.18)

In appendix B, we further streamline our notation and display a sample Wick contraction.

4. Proof of finiteness

In this section we explicitly prove that all light-cone superspace Green functions in the

β-deformed theory are finite in the planar limit. Having realized the β-deformation in the

manner described in the previous section the proof of finiteness of [4] can be repeated step

by step in the present case.

The general philosophy behind our approach is as follows.

• The superficial degree of divergence of all planar supergraphs can be shown to be zero

using a version of the power counting methods of [23], adapted to our formalism. This

result assumes that all momenta in a supergraph contribute to the loop integral and

provides a preliminary estimate.

• We then distinguish between internal and external momenta and focus on vertices

attached to external legs. Using manipulations of the chiral derivatives we show that

the superficial degree of divergence can be reduced to a negative value.

• The above analysis applies to the entire supergraph. The same analysis can be applied

to prove that all subgraphs also have negative superficial degree of divergence.

• Having shown that all supergraphs and their subgraphs in the planar approximation

have negative superficial degree of divergence, finiteness of all Green functions follows

from Weinberg’s theorem [24].

– 8 –
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4.1 Supergraph power counting

In this subsection we explain how the superficial degree of divergence is estimated. A

general procedure for determining the degree of divergence of diagrams in superspace was

developed in [23]. These power counting rules were applied to N = 4 Yang-Mills in light-

cone superspace in [4] to show that all supergraphs are at most logarithmically divergent if

all momenta contribute to the loop integrals. This result remains valid in the β-deformed

theory at the planar level, whereas the same analysis provides a less stringent bound on

the divergence of non-planar diagrams.

The first step in the analysis of the degree of divergence is to perform the fermionic

integrals using the δ-functions in the propagator (3.17). This procedure is easily repeated

for all the θ-integrals within a given loop until θ integrations at only two superspace points

remain. The last two integrals are evaluated using the formula [4, 23]

δ8(θ(1) − θ(2)) d4
(1) d̄4

(1) δ8(θ(1) − θ(2)) = δ8(θ(1) − θ(2)) , (4.1)

which shows that when acting with the operator d4
(1)d̄

4
(1) on the second δ-function only

the fermionic derivatives contribute. This implies that (4.1), which could have potentially

contributed four powers of momentum to the loop integral, instead has a null contribution.

Note that any other combination of the chiral derivatives, involving less than four d’s and

four d̄’s, is zero because it necessarily involves factors of (θ(1) − θ(1)). This result combined

with the usual power counting rules, implies that the superficial degree of divergence of a

generic supergraph in N = 4 Yang-Mills is zero [3, 4].

This analysis is in general affected by the β-deformation. The effect of the modification

described in section 3.2.2 is to introduce ?-products into supergraphs. In the case of planar

supergraphs the step-wise fermionic integration leads to expressions of the form

δ8(θ(1) − θ(2))
[

A(θ(1)) ?(1) d4
(1)d̄

4
(1)δ

8(θ(1) − θ(2)) ?(2) B(θ(2))
]

, (4.2)

where A(θ1) and B(θ2) are arbitrary superfields and ?(1), ?(2) act at superspace points 1, 2.

The presence of ?-products introduces phases implying that the expansion of the expression

in brackets contains factors such as

(eiπp1θ(1) − eiπp2θ(1)) . (4.3)

In planar diagrams, charge conservation ensures that p1 = p2, so we have a formula analo-

gous to (4.1)

δ8(θ(1)−θ(2))
[

A(θ(1)) ?(1) d4
(1)d̄

4
(1)δ

8(θ(1) − θ(2)) ?(2) B(θ(2))
]

=A(θ(1))B(θ(2)) δ8(θ(1)−θ(2)),

(4.4)

which leads to the same conclusion concerning the degree of divergence of supergraphs.

Despite the presence of non-trivial phase factors, combinations that involve less than eight

chiral derivatives acting on a δ-function vanish. More details regarding planar supergraph

power counting in the presence of ?-products are presented in appendix C.

In the case of non-planar supergraphs, the modification to the rules due to the ?-

products is more complicated. In particular, the chiral derivatives can contribute extra

factors of momentum to the loop integrals. Thus, the methods described here only offer a

very poor upper bound on the degree of divergence of non-planar graphs.
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4.2 Analysis of planar n-point graphs

We now explicitly show how to implement the points listed at the beginning of section 4.

As explained in the previous pages, the superficial degree of divergence of a generic planar

supergraph is zero if all momenta contribute to the loop integrals. However, since the

external legs in a supergraph do not contribute to these integrals, certain Wick contractions

can potentially give rise to diagrams with positive degree of divergence. We analyze the

contribution of different Wick contractions to generic supergraphs and, using the Feynman

rules of the theory, we explain how to reduce, in each case, the degree of divergence from

that determined by power counting to a negative value.

Notice that this analysis is applicable separately to both planar and non-planar dia-

grams, but it only allows us to conclude that the planar supergraphs are finite because for

these we have a stronger bound on the superficial degree of divergence. A limited number

of planar diagrams require special attention and these are discussed in subsection 4.2.3.

4.2.1 Graphs involving a cubic vertex

We first examine the case where an external leg is attached to a cubic vertex. We consider

〈Φ(z1)Φ(z2)Φ(z3)

∫

d12z iL3(z)〉 , (4.5)

where

iL3 = (−g)Tr

[

1

12

1

∂−
Φ [

d̄4

∂2
−

Φ, ∂
d̄4

∂2
−

Φ]? + 4
d̄4

∂3
−

Φ [Φ, ∂̄Φ]?

]

. (4.6)

We start with the first term in (4.6) and show that all the terms it produces on Wick

contraction are finite. Assume leg 1 is external while 2 and 3 are internal.

We then have the following Wick contractions

− g

12
Tr′

{

1

∂−
∆1[

d̄4

∂2
−

∆2, ∂
d̄4

∂2
−

∆3]? + (2 ↔ 3)

+
1

∂−
∆2[

d̄4

∂2
−

∆3, ∂
d̄4

∂2
−

∆1]? + (2 ↔ 3)

+
1

∂−
∆2[

d̄4

∂2
−

∆1, ∂
d̄4

∂2
−

∆3]? +
1

∂−
∆3[

d̄4

∂2
−

∆1, ∂
d̄4

∂2
−

∆2]?

}

. (4.7)
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The primed trace, which indicates that only the indices associated with the interaction

point are summed over, is further explained in appendix B. For convenience, we will only

explicitly write this trace in the first of a series of steps. In the following we will repeatedly

integrate by parts the chiral derivatives that appear in the contractions above. The rules

governing these manipulations are described in appendix A.2.

In the first term in (4.7), the presence of a 1
∂
−

acting on an external leg implies that we

lose a factor of momentum from the denominator of the loop-integral making it potentially

linearly divergent. In the first line, we integrate the d̄4 from leg 2 for example moving it

to leg 1 (it cannot move to leg 3 since d̄ 5 = 0). This takes two powers of momentum out

of the loop-integral, rendering it finite. The second line in momentum-space is

1

k−

1

(p− − k−)2
p

p2
−

∆2[d̄
4∆3, d̄

4∆1]? . (4.8)

The presence of the factor p d̄4

p2
−

on the external leg improves the convergence of the integral

by a single power of momentum. Hence this contribution is finite. The third line in (4.7)

is more subtle. We start with the first term and integrate the superspace chiral derivatives

from leg 3 to leg 2

1

∂−
∆2[

d̄4

∂2
−

∆1, ∂
d̄4

∂2
−

∆3]? =
d̄4

∂−
∆2[

d̄4

∂2
−

∆1, ∂
1

∂2
−

∆3]? . (4.9)

Using the last relation in (A.1) we rewrite this as

−∂
1

∂2
−

∆3[
d̄4

∂2
−

∆1,
d̄4

∂−
∆2]? . (4.10)

The third line in (4.7) now reads

−∂
1

∂2
−

∆3[
d̄4

∂2
−

∆1,
d̄4

∂−
∆2]? +

1

∂−
∆3[

d̄4

∂2
−

∆1, ∂
d̄4

∂2
−

∆2]? . (4.11)

Working in momentum space, this becomes

−
(

p − k

(p− − k−)2
1

p2
−

1

k−
− 1

p− − k−

1

p2
−

k

k2
−

)

∆3 [d̄4∆1, d̄
4∆2]? . (4.12)

When tracking ultra-violet divergences, our focus is on large loop-momenta. For kÀp, the

leading term in parentheses vanishes implying finiteness of this contribution.

Having analyzed diagrams resulting from the first vertex in (4.6) we now move to the

second vertex. The Wick contractions in this case yield

−4g Tr′
{

d̄4

∂3
−

∆1[∆2, ∂̄ ∆3]? + (2 ↔ 3)

+
d̄4

∂3
−

∆2[∆3, ∂̄ ∆1]? + (2 ↔ 3)

+
d̄4

∂3
−

∆3[∆1, ∂̄ ∆2]? +
d̄4

∂3
−

∆2[∆1, ∂̄ ∆3]?

}

. (4.13)
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In line 1, both internal legs are free of d̄’s. However, they are both attached to (internal)

propagators that carry a factor of d4 (see equation (3.17)). Integrating this factor of

d4 from either internal leg takes it out of the loop integral (since d 5 = 0) and ensures

convergence. Line 2 is finite because the numerator involves factors of p̄ (from ∂̄ ∆1), the

external momentum, which factors out of the integral. As in the previous case, line 3

involves a little work. We start with the first term

d̄4

∂3
−

∆3[∆1, ∂̄ ∆2]? =
1

∂3
−

∆3[∆1, ∂̄ d̄4 ∆2]? , (4.14)

which is rewritten, using antisymmetry of the ?-commutator and the last relation in (A.1),

as

∂̄ d̄4 ∆2[
1

∂3
−

∆3,∆1]? = −∂̄ d̄4 ∆2[∆1,
1

∂3
−

∆3]? . (4.15)

In momentum space, the entire third line is now

(

p̄ − k̄

k3
−

− k̄

(p− − k−)3

)

d̄4∆2[∆1,∆3]? . (4.16)

For kÀp the leading terms cancel and this makes the resulting integral finite.

4.2.2 Graphs involving a quartic vertex

We start from

〈Φ(z1)Φ(z2)Φ(z3)Φ(z4)

∫

d12z iL4(z)〉 , (4.17)

where

iL4(z) = i
g2

16
Tr

{

1

∂−
[Φ, ∂−Φ]

1

∂−

[

d̄4

∂2
−

Φ,
d̄4

∂−
Φ

]

?

+
1

2

[

Φ,
d̄4

∂2
−

Φ

]

?

[

Φ,
d̄4

∂2
−

Φ

]

?

}

. (4.18)

We will analyze separately the cases in which either one or two legs of the quartic vertex

are external. In the following, we will ignore the overall factor of ig2

16 .
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Graphs involving two external lines. We choose legs 1 and 2 to be external while 3

and 4 are internal.

The first quartic vertex in (4.18) gives rise to twenty-four contractions. The analysis

of the majority of these involves the same manipulations utilized in the case of the cubic

vertex: superspace chiral derivatives, d’s or d̄’s, are integrated by parts from an internal leg

onto an external one to remove factors of momentum from the numerator of loop integrals.

The only noticeable difference with respect to the analysis in the previous section is that the

integrations by parts can produce non-trivial phase factors which, however, do not affect

the ultra-violet behavior of the diagrams. For completeness we discuss these contractions

in appendix E, focussing instead here on those which require special attention. These are

Tr′
{

1

∂−
[∆1, ∂− ∆3]?

1

∂−

[

d̄4

∂2
−

∆2,
d̄4

∂−
∆4

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

}

. (4.19)

In terms of momenta, the first term becomes

k−
k− + p−

1

q− + l−

1

q2
−

1

l−
[∆1,∆3]?[d̄

4∆2, d̄
4∆4]? . (4.20)

The potentially divergent contribution in this expression is cancelled by contributions from

the second quartic vertex in (4.18). The twenty-four contractions from the second quartic

vertex reduce to twelve terms due to the symmetry in the expression. This symmetry factor

cancels the 1
2 in front of the vertex. The contractions that cancel the divergences in (4.19)

can be written as
[

∆1,
d̄4

∂2
−

∆3

]

?

[

∆4,
d̄4

∂2
−

∆2

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4) . (4.21)

We integrate the d̄4 from leg 3 to leg 4 (if a single d̄ hits the external leg 1, the integral is

rendered finite). In momentum space, the first term is

1

k2
−

1

q2
−

[∆1,∆3]?[d̄
4∆4, d̄

4∆2]? . (4.22)

In the large loop-momentum limit k, lÀ p, q the leading order term exactly cancels against

that in (4.20) implying that the combined contribution is finite. In appendix E we present

the finiteness analysis for the remaining contractions involving the second quartic vertex.

Graphs involving one external line. We choose leg 1 to be external keeping 2, 3 and

4 internal.

We split our analysis into two portions. We consider first graphs in which the external

leg 1 does not have a factor of d̄4 on it. In this case, the contractions for the first quartic

vertex in (4.18) are

Tr′
{

1

∂−
[∆1, ∂− ∆2]?

1

∂−

[

d̄4

∂2
−

∆3,
d̄4

∂−
∆4

]

?

+
1

∂−
[∆2, ∂− ∆1]?

1

∂−

[

d̄4

∂2
−

∆3,
d̄4

∂−
∆4

]

?

+
1

∂−
[∆1, ∂− ∆2]?

1

∂−

[

d̄4

∂2
−

∆4,
d̄4

∂−
∆3

]

?

+
1

∂−
[∆2, ∂− ∆1]?

1

∂−

[

d̄4

∂2
−

∆4,
d̄4

∂−
∆3

]

?

+ (permutations of 2, 3, 4)

}

. (4.23)
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The contractions from the second quartic vertex in (4.18) read

[

∆1,
1

∂2
−

∆2

]

?

[

d̄4∆3,
d̄4

∂2
−

∆4

]

?

+

[

∆1,
1

∂2
−

∆2

]

?

[

d̄4∆4,
d̄4

∂2
−

∆3

]

?

+ (permutations of 2, 3, 4) ,

(4.24)

where we have integrated the d̄4 away from leg 2 to legs 3 and 4 (if they move to leg

1, the integral is finite). In momentum space, the sum of equations (4.23) and (4.24) is

proportional to

(p− + k−)(l− + q−)2(l− − q−) + q−k3
− − q−k2

−p− − k3
−l− + l−k2

−p−
(p− + k−)(l− + q−)l2−q2

−k2
−

. (4.25)

Using momentum conservation, in the large loop-momentum limit, the dominant terms in

this expression behave as
(k− + 2l−)p2

−
k3
−l2−(k− + l−)2

, (4.26)

implying that the graph is finite.

The final case is when the external leg has a factor of d̄4 on it. When studying a

complicated supergraph, if we locate a single external leg (free of d̄4) attached to a three

or four-point vertex, finiteness follows based on the arguments presented so far. Thus the

only cause for concern is a supergraph which has factors of d̄4 on all its external legs. If

this is the case, then in order for the expression to survive the integration over the entire

measure
∫

d4θd4θ̄ we necessarily need a factor of d4 to compensate the d̄4. This factor of

d4 must come from the internal structure of the supergraph and ensures that the integrals

are rendered finite.

4.2.3 Exceptional cases

There are a few planar supergraphs that require special attention. These are depicted in

figure 1.

The analysis of section 4 is insufficient to prove finiteness for some specific contractions

corresponding to diagrams of the types (1), (2) and (3) in figure 1. The chiral derivative

structure in these contractions is explicitly shown in the figures. Notice that these graphs

have factors of d̄4 acting on all the external legs and thus they belong to the class discussed

at the end of the previous subsection. Our proof assumes that factors of d4 can always be
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d̄4

∂3−

d̄4

∂3−

∂̄

∂̄

(1) (2)

∂̄
d̄4

∂2
−

d̄4

∂2−

d̄4

∂3−

(3)

d̄4

∂2
−

d̄4

∂2−

d̄4

∂2−

d̄4

∂2−

(4)

Figure 1: Diagrams to be treated separately.

integrated by parts from internal to external lines for diagrams of the type in figure 1. In

the present cases, however, after the first d4 has been moved out of the loop, the second

factor of d4 can also move to the other internal line which now has no d’s acting on it. The

degree of divergence at this stage is still logarithmic. The resolution to this comes from

the chiral derivative structure. The θ-integrals in all these graphs trivially vanish in the

planar limit since there are not enough chiral derivatives acting on the δ-functions.

The diagram (4) in figure 1 involves a self-contraction which is also not dealt with in

our arguments of the previous section. In addition, there are subtleties associated with

defining this graph in superspace in the presence of ?-products. Resorting to a simple

component calculation, however, one can verify that in the planar limit the one-loop two-

point function of the β-deformed theory is identical to that in N = 4 Yang-Mills. Thus

the one-loop two-point function which includes the contribution (4) is finite and has the

correct asymptotic behavior at large momentum.

We have thus shown that all supergraphs have a negative superficial degree of diver-

gence. This analysis applies equally well to all subgraphs within a given supergraph. This

allows us to use Weinberg’s theorem [24] to conclude that all the Green functions of the

theory are finite. Notice that Weinberg’s theorem in its original form requires Euclidean

signature and therefore there are potential subtleties when using it in light-cone gauge. In

our formalism, the Wick rotation into Euclidean space is permitted thanks to the resid-

ual gauge freedom [25], which allows us to choose the pole structure (p− + iεp+)−1 for

the operator 1
∂
−

[3]. We also point out that Weinberg’s theorem has been generalized to

Lorentzian signature in [26].

5. Conclusions

In this paper we have studied the finiteness properties of a special example of β-deformed
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N = 4 Yang-Mills theory, involving a single real deformation parameter. Theories in this

class, despite the reduced amount of supersymmetry, preserve many of the remarkable

properties of the parent N = 4 theory. Our methods show that this particular β-deformed

N = 4 SYM is conformally invariant in the planar limit. The essential ingredient of

this analysis was the realization that the deformed theory, despite having only N = 1

supersymmetry, could still be formulated in N = 4 light-cone superspace using suitably

defined superspace ?-products. In this formulation the deformation preserves the ultra-

violet behavior of the N = 4 theory, in the planar limit, thanks to the properties of the

superspace ?-product, which allowed us to prove the finiteness of all the Green functions

in the theory following the same steps previously utilized in [3, 4] in the N = 4 case.

The results in this paper are valid to all orders in planar perturbation theory. Instanton

effects, which have been studied in the β-deformed theory in [27], generalizing previous work

done in N = 4 SYM [28], are exponentially suppressed in the planar approximation and

therefore cannot spoil the conformal invariance of the theory in this limit. However, one

of the remarkable features of the β-deformed theory is that it inherits from N = 4 SYM

a modified form of S-duality [29]. Instantons are expected to play a crucial role in the

realization of this symmetry.

The proof presented here is valid for arbitrary choice of the gauge group, but the case

of SU(N) is of special interest in the context of the AdS/CFT correspondence. The β-

deformation studied in this paper is believed to be dual to the supergravity background

constructed in [10]. Our arguments, showing that the deformed SYM theory is conformally

invariant to all orders in perturbation theory in the planar limit, suggest that the SO(4,2)

isometries of the supergravity solution of [10] should not be affected by string tree-level

corrections.

Our analysis opens up many venues for generalizations. A straightforward extension

involves further deforming the theory with the addition of mass terms for the fields in the

N = 1 chiral multiplets. These mass deformations can preserve N = 1 supersymmetry or

break it completely, but do not spoil the ultra-violet finiteness of the theory, although they

obviously break conformal invariance.

As already mentioned the theory considered in this paper belongs to the class of defor-

mations of N = 4 SYM characterized by the superpotential (1.1). It has been argued [6]

that the generic theory in this family can be rendered finite by imposing a single relation

among the parameters,

γ(g, h, β) = 0 . (5.1)

Our results show that in the planar approximation the theory involving only a real de-

formation parameter, β, is finite without any conditions on β. This is in agreement with

the explicit results of [11 – 13]. Moreover it implies that the general condition for finite-

ness (5.1), specialized to the case of a single real β parameter and h = 1, should be

identically satisfied in the large N limit at all orders in the Yang-Mills coupling. We note

that a different argument for the all-order finiteness of this theory in the planar limit was

provided in [13].

Although we have only discussed the case of real β, the light-cone superspace formalism
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is well suited to study the case where the deformation parameter is made complex. In

this case, even in the planar limit, the condition (5.1) may remain non-trivial. Therefore

our approach should provide interesting insights into the surface of finite theories defined

by (5.1).

We also believe that the analysis that we presented can be generalized to the case

of a β-deformation that breaks all the supersymmetries in the theory [30]. This would

be extremely interesting because we would then have a proof of conformal invariance, in

the planar limit, for a non-supersymmetric field theory. These issues are currently under

investigation.

Having shown that the β-deformed theory preserves conformal invariance, it is natural

to study the spectrum of scaling dimensions of gauge-invariant operators in this model.

Various results have been presented in [11 – 13, 31], confirming and extending the earlier

analysis of [8, 32]. The problem of computing the spectrum of scaling dimensions can

be efficiently recast as an eigenvalue problem for the dilatation operator of the theory.

In the planar limit on which we have focussed, in the case of the N = 4 Yang-Mills

theory, the dilatation operator can be related to the Hamiltonian of an integrable spin

chain allowing for the use of powerful techniques such as the Bethe Ansatz to compute

anomalous dimensions [33]. It may be interesting to generalize some of these techniques

for use in studying the β-deformed theory.
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A. Properties of star products

We present here relevant relations satisfied by the star products.

A.1 Properties of the component ∗-product

The ∗-product satisfies the following properties

A ∗ (B ∗ C) = (A ∗ B) ∗ C (associativity)

[A, [B,C]∗]∗ + [B, [C,A]∗]∗ + [C, [A,B]∗]∗ = 0 (Jacobi identity)

A ∗ B = AB (for QA · QB = 0 or QA + QB = 0)

Tr(A[B,C]∗) = Tr(B[C,A]∗) = Tr(C[A,B]∗) (for QA + QB + QC = 0) . (A.1)
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A.2 Properties of the superspace ?-product

The superspace ? is essentially a superspace realization of the component ∗. Naturally

it also satisfies all the properties listed above. The presence of ?-products in superspace

expressions modifies the rules for partial integration of chiral derivatives. In this appendix,

we describe manipulations of chiral derivatives. In the following, the index on the chiral

derivatives refers to their flavor.3

In general, the integration by parts of chiral derivatives in superspace expressions

involving ?-products gives rise to phase factors. This is a consequence of the modification

of the standard Leibniz rule, which, in the presence of ?-products, becomes

d1(F ? G) = d1F ? (e−iπβ Q1
G) + (eiπβ Q1

F ) ? d1G . (A.2)

Similar relations hold for the other chiral derivatives. In this relation, Q1 is an operator,

which acts differently on the various terms in the expansion of the superfields F and G.

Therefore, in order to prove (A.2), it is convenient to decompose the superfields into pieces

which have definite flavor charge. This is achieved by the standard θ-expansion

F = f(0,0) + f(1,0)mθm + fm
(0,1)θ̄m + · · ·

G = g(0,0) + g(1,0)mθm + gm
(0,1)θ̄m + · · · . (A.3)

We then have

d1 (f ? g) = d1 [f g eiπβ(Q1
f
Q2

g−Q2
f
Q1

g)] , (A.4)

where the terms in the exponential are now numbers and f and g are generic terms in the

expansions (A.3). In (A.4) we can now use the ordinary Leibniz rule to obtain

d1 (f ? g) = (d1 f) g eiπβ(Q1
f
Q2

g−Q2
f
Q1

g) + f (d1 g) eiπβ(Q1
f
Q2

g−Q2
f
Q1

g) . (A.5)

From the definition of the supercharges in (3.11) and table 2 it follows that

Q1
d1f = Q1

f and Q2
d1f = Q2

f + 1 , (A.6)

implying that (A.5) can be rewritten as

d1 (f ? g) = (d1 f) ? g e−iπβ Q1
g + f ? (d1g) eiπβ Q1

f . (A.7)

We now re-sum the component pieces into superfields and this yields (A.2).

In manipulating superspace expressions it is often necessary to integrate by parts

multiple chiral derivatives. This is easily achieved by repeatedly using (A.2). In particular,

for

d1d2d3d4 (F ? G) , (A.8)

3This notation should not be confused with that in the main text where d
4 was used to denote the

product of all four chiral derivatives.

– 18 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
6

we obtain

d1d2d3d4 (F ? G) = (d1d2d3d4 F ) ? G − ep1 (d2d3d4 F ) ? d1G + ep2 (d3d4 F ) ? d2d1 G

+ · · · + F ? d1d2d3d4G . (A.9)

The exact values of the phase factors, ep1 , ep2, . . ., which can be computed using (A.2)

are not essential to our analysis. This is because our proof, in section 4, relies on moving

four chiral derivatives which does not produce a phase. That is, partially integrating four

chiral derivatives, ensures that the complicated phase factors cancel each other. This is

because the product of all four chiral derivatives is uncharged under the U(1)×U(1) flavor

symmetry. In particular, for three generic superfields F , G and H, the Leibniz rule implies

that
∫

d12z {(d1d2d3d4 F ) ? G} d1d2d3d4 H =

∫

d12z {F ? (d1d2d3d4G)} d1d2d3d4 H , (A.10)

since the chiral derivatives cannot move from F to H. Equation (A.10) is non-trivial to

prove directly in superspace because the superfields do not carry definite U(1)×U(1) charge.

However, the result is straightforward to verify, by decomposing the (generic) superfields

into pieces which carry definite flavor charge, as was done in the derivation of the modified

Leibniz rule (A.2).

B. Wick contraction notation

The superfield propagator is

〈(Φ)u
v (z1) (Φ)r

s(z2)〉 = 〈Φa (T a)uvΦb (T b)
r

s〉 = ∆ur
vs (z1 − z2) , (B.1)

A sample Wick contraction is
(

Φu1
v1

(z1)Φu2
v2

(z2)Φu3
v3

(z3)Φu4
v4

(z4)

)([

Φ(z),
d̄4

∂2
−

Φ(z)

]

?

)r

s

( [

Φ(z),
d̄4

∂2
−

Φ(z)

]

?

)s

r

, (B.2)

where
([

Φ(z),
d̄4

∂2
−

Φ(z)

]

?

)r

s

= Φr
m(z) ?

d̄4

∂2
−

Φm
s (z) − d̄4

∂2
−

Φr
m(z) ? Φm

s (z) . (B.3)

We treat the propagator between superspace points z and z1 as a matrix in the indices

associated with the point z. We simplify our notation considerably by not explicitly showing

the z1 indices and the dependence on (z − z1). We write

∆s u1
r v1

(z − z1) ≡ (∆1)
s
r ≡ ∆1 . (B.4)

In this new notation, the contraction reads

Tr′ {[∆1,∆2]? [∆3,∆4]?} , (B.5)

where the symbol Tr′ refers to the fact that only the indices associated with the point z

are contracted.
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? ?

?

Figure 2: Star-products in supergraphs.

Figure 3: Loops in θ-space produced by the step-wise fermionic integrations.

C. Planar supergraphs and power counting

This appendix illustrates some basic manipulations of planar supergraphs in the presence

of ?-products. The ?-products acting at three- and four-point vertices are shown explicitly

in figure 2. The arrows on the ?’s between two lines refer to the order in which the

corresponding superfields are multiplied.

Planar supergraphs in the β-deformed theory are characterized by the fact that all

these ?-products that act between adjacent legs in a vertex have the same orientation.

In other words the ?’s all act either clockwise or counter-clockwise. Using the properties

listed in appendix A these ?’s can be moved around the vertex as long as their orientation

is preserved. This property is used in the procedure of step-wise integration over the

fermionic variables as explained in section 4.1.

The procedure of step-wise integration over the θ’s using the δ-functions in the super-

field propagators shrinks internal lines in a supergraph and can result in self-contracting

vertices. These pose a potential problem since their correct definition in the presence of ?-

products is rather subtle. However, this type of vertex can be avoided by carefully choosing

the order in which the θ-integrals are performed. It is easy to verify that self-contractions

only arise when shrinking the internal lines in graphs of the type shown in figure 3. There-

fore we explain below how to treat generic graphs in this class. Notice that self-contracting

lines can also be induced by the Feynman rules before the shrinking process is initiated.

These primitive self-contracting vertices are treated as explained in subsection 4.2.3.

In all these diagrams, the approach is the same. We illustrate the method in the case

of the diagram (2) in the figure (note that the diagram (1) is simply dealt with by using
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⇒

Figure 4: Non-planar contribution to the one-loop two-point function.

formula (4.4)). Using the fact that the ?-product is associative, we organize the order of

?-products of fields so that at point 1 we have C?(D?A) and at point 2 (B?D)?C. We now

θ-expand legs A, B and D into terms of definite charge under U(1)×U(1). The charges

carried by the incoming and outgoing legs A and B are equal and opposite. Applying

charge conservation along a given internal line, for example C, we see that for each SU(4)

flavor, the variables θ(1) and θ(2) pick up equal phases. It is clear that such a procedure

applies to more complicated cases such as (3) in figure 3.

When dealing with graphs that have more external legs, it is useful to view these

external legs as a single block when applying the analysis described above. It is important

to note that this “block” usually contains ?’s in it and hence has a non-trivial dependence

on β.

In some cases, manipulations on supergraphs can lead to an uneven (non-singlet)

combination of the chiral derivatives. In these situations it might appear that charge

conservation previously used may be violated. However these uneven distributions of the

chiral derivatives always appear from partial integrations and hence the resulting vertices

are always accompanied by phase factors as explained in appendix A.2. These phase factors

cancel against those from the apparent violation of charge conservation as a consequence

of the modified Leibniz rule (A.2). This implies that in similar situations the ?-products

can be evaluated assuming that the ? does not act on the d’s. This simple rule is valid for

any effective vertex arising from our procedure. The methods applied to graphs having an

even distribution of chiral derivatives therefore are also applicable here.

D. Planar versus non-planar supergraphs

In this appendix, we explicitly illustrate the difference between planar and non-planar

graphs in the context of power counting. This difference, best illustrated with the two-

point function, is explained in the case of a specific Wick contraction.

Our starting point is the non-planar graph shown in figure 4. We will explain why the

power counting rules described in subsection 4.1 and in appendix C are less useful in this

case. Having done this, we turn to the planar case and show why the same power counting

rules work in that case exactly as with N = 4 Yang-Mills.
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Reading off Feynman rules from the action (3.12), we see that figure 4 is proportional

to4

∫

d4θ(3) d4θ̄(3) d4θ(4) d4θ̄(4) d4k
(p − k)(p̄ − k̄)

p4
µp2

−k2
ν(p− − k−)2(pρ − kρ)

2 δ8(θ(3) − θ(4)) (D.1)

× [d(1)]
4[d̄(1)]

4δ8(θ(1) − θ(3)) ?3 [d̄(3)]
4[d(3)]

4δ8(θ(3) − θ(4)) ?−1
4 [d(4)]

4δ8(θ(4) − θ(2)) ,

where the ?−1 operation is simply defined by

F ?−1 G = G ? F , (D.2)

where F and G represent superfields or products of superfields.

We will explain the effect of the ?-deformation by considering the contribution of this

graph to the 〈χ̄1χ
1〉 two-point function. For this contribution, we need to project the two

external legs in the supergraph onto the corresponding fermion components. At external

leg 1, this is achieved by acting with d̄(1)1 and then setting θm
(1) = θ̄(1)m = 0. This yields

d̄(1)1 [d(1)]
4[d̄(1)]

4δ8(θ(1) − θ(3))
∣

∣

θ(1)=θ̄(1)=0
=

√
2p− θ̄(3)1

4
∏

m=2

[

− 1 − p−√
2
θm
(3)θ̄(3)m

]

. (D.3)

At external leg 2, the projection onto χ1 requires that we act with the operator d̄(2)2d̄(2)3

d̄(2)4 and then set θn
(2) = θ̄(2)n = 0. This computation gives

d̄(2)2d̄(2)3d̄(2)4 [d(4)]
4δ8(θ(4) − θ(2))

∣

∣

θ(2)=θ̄(2)=0
= −θ1

(4)

4
∏

n=2

[

1 +
p−√

2
θn
(4)θ̄(4)n

]

. (D.4)

Having projected the two external legs onto the required fermionic states, we now expand

the piece between the ?-products as

[d̄(3)]
4[d(3)]

4δ8(θ(3) − θ(4))=

4
∏

p=1

[

− 1 +
√

2k−θp
(3)θ̄(4)p −

1√
2
k−(θp

(3)θ̄(3)p + θp
(4)θ̄(4)p)

−1

2
k2
−θp

(3)θ̄(3)pθ
p
(4)θ̄(4)p

]

(D.5)

The deformation will produce phase factors that we need to identify. The phase factors

due to the ?3 in (D.1) arise from the following term

{

θ̄(3)1?3

4
∏

p=1

θp
(3)

}

θ̄(4)p , (D.6)

while the phase factors from the ?−1
4 are due to the term

4
∏

p=1

θp
(3){θ̄(4)p ?−1

4 θ1
(4)} . (D.7)

4Some of the equations in this appendix contain single chiral derivatives. To avoid ambiguities in the

notation we therefore denote the product of four chiral or anti-chiral derivatives respectively by [d(i)]
4 and

[d̄(i)]
4, where the subscript (i) refers to the superspace point.
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Figure 5: Planar contribution to the one-loop two-point function.

These phase factors are easy to compute using table 2. Once the ?-products have been

evaluated, we are free to perform the integral over θ(4) with the help of the first δ-function

in (D.1). Since this sets θ(3) = θ(4), we will no longer explicitly write the (3) index in what

follows. Thus, the contribution of (D.1) to 〈χ̄1χ
1〉 is

∫

d4θ d4θ̄ d4k
(p − k)(p̄ − k̄)

p4
µp2

−k2
ν(p− − k−)2(pρ − kρ)

2 (−2p2
−)[θ1θ̄1][θ

4θ̄4]

× [
√

2θ2θ̄2{p−k−(eiπβeiπβ − 1)}][
√

2θ3θ̄3{p−k−(e−iπβe−iπβ − 1)}] . (D.8)

This step illustrates the effect of the β-deformation on non-planar supergraphs. The shrink-

ing of lines in non-planar graphs is non-trivial due to the ?(. . .)?−1 structure. This structure

limits our ability to move around ?’s (to free up a δ-function) and is responsible for the

phases, from the two ?’s, adding up and producing factors like e−iπβe−iπβ in (D.8).

We now perform the remaining θ-integration to obtain

∫

d4k
(p − k)(p̄ − k̄)

p4
µp2

−k2
ν(p− − k−)2(pρ − kρ)

2

× (−2p2
−)[p2

− − 2p−k−(cos 2πβ − 1) − 2k2
−(cos 2πβ − 1)] . (D.9)

Although the first term is logarithmic, the second and third are linearly and quadratically

divergent respectively. Thus the power counting procedure of subsection C only offers a

poor upper bound on the superficial degree of divergence of this non-planar supergraph,

namely D = 2. Thus the methods of section 4 (which ensured the cancellation of the

logarithmic divergences in planar supergraphs) only prove the cancellation of quadratic

divergences in non-planar supergraphs.

Having analyzed in detail the non-planar case we are in a position to easily understand

why planar supergraphs are much easier to handle. The graph in figure 5 evaluates to

∫

d4θ(3) d4θ̄(3) d4θ(4) d4θ̄(4) d4k
(p − k)(p̄ − k̄)

p4
µp2

−k2
ν(p− − k−)2(pρ − kρ)

2 δ8(θ(3) − θ(4)) (D.10)

× [d(1)]
4[d̄(1)]

4δ8(θ(1) − θ(3)) ?3 [d̄(3)]
4[d(3)]

4δ8(θ(3) − θ(4)) ?4 [d(4)]
4δ8(θ(4) − θ(2)) .

We see immediately that the ?-structure differs from that in (D.1). This difference implies

that the phase factors produced in (D.8), instead of adding up now cancel. Once again, we

focus on the contribution of this two-point function to 〈χ̄1χ
1〉. Proceeding in exactly the
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same manner described so far, we find that this contribution is

−2(p − k)(p̄ − k̄)p2
−

p4
µk2

ν(p− − k−)2(pρ − kρ)
2 , (D.11)

which is logarithmically divergent. Since this graph has superficial degree of divergence

equal to zero, our treatment of it as described in section 4 ensures that it is finite.

We remind the reader that in the planar limit, the one-loop two-point function of the

β-deformed theory is identical to that in N = 4 Yang-Mills and has the correct asymptotic

behavior at large momentum.

E. Quartic vertex contractions

E.1 Graphs involving two external legs

The twenty-four contractions induced by the first quartic vertex in (4.18) are

Tr′
{

1

∂−
[∆3, ∂− ∆4]?

1

∂−

[

d̄4

∂2
−

∆1,
d̄4

∂−
∆2

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

+
1

∂−
[∆1, ∂− ∆2]?

1

∂−

[

d̄4

∂2
−

∆3,
d̄4

∂−
∆4

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

+
1

∂−
[∆3, ∂− ∆1]?

1

∂−

[

d̄4

∂2
−

∆4,
d̄4

∂−
∆2

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

+
1

∂−
[∆3, ∂− ∆1]?

1

∂−

[

d̄4

∂2
−

∆2,
d̄4

∂−
∆4

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

+
1

∂−
[∆2, ∂− ∆3]?

1

∂−

[

d̄4

∂2
−

∆4,
d̄4

∂−
∆1

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

+
1

∂−
[∆1, ∂− ∆3]?

1

∂−

[

d̄4

∂2
−

∆2,
d̄4

∂−
∆4

]

?

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

}

.(E.1)

The last line in the equation above was dealt with in section 4.2.2. For the rest, the finite-

ness arguments are as follows. In line 1, we partially integrate out a factor d4 (from the

internal propagator) of either internal leg to the external legs. Note that these deriva-

tives act in all possible ways on the two external legs producing odd phase factors due to

equation (A.9). These phase factors would be potentially dangerous if we were combining

terms to achieve finiteness. However, here the phase factors are irrelevant because each

individual term is itself finite. In line 2, both internal legs carry a factor d̄4. Starting from

either leg, this can be integrated out of the loop which becomes finite. The numerator in

line 3 has a factor of p− and a factor of q− both of which do not contribute to the integral.

Lines 4 and 5 both involve a factor of p− in the numerator. These factors ensure that the

integrals resulting from lines 3, 4 and 5 are finite.

As explained in section 4.2.2, the twenty-four contractions from the second quartic

vertex in (4.18) reduce to twelve terms. Four of these twelve terms can be easily shown to
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be finite using the manipulations described in the main text. This leaves eight terms

Tr′
{[

∆1,
d̄4

∂2
−

∆2

]

?

[

∆3,
d̄4

∂2
−

∆4

]

?

+

[

∆1,
d̄4

∂2
−

∆2

]

?

[

∆4,
d̄4

∂2
−

∆3

]

?

+

[

∆2,
d̄4

∂2
−

∆1

]

?

[

∆3,
d̄4

∂2
−

∆4

]

?

+

[

∆2,
d̄4

∂2
−

∆1

]

?

[

∆4,
d̄4

∂2
−

∆3

]

?

+

[

∆1,
d̄4

∂2
−

∆3

]

?

[

∆4,
d̄4

∂2
−

∆2

]

?

+

[

∆1,
d̄4

∂2
−

∆4

]

?

[

∆3,
d̄4

∂2
−

∆2

]

?

+

[

∆3,
d̄4

∂2
−

∆1

]

?

[

∆2,
d̄4

∂2
−

∆4

]

?

+

[

∆4,
d̄4

∂2
−

∆1

]

?

[

∆2,
d̄4

∂2
−

∆3

]

?

}

. (E.2)

The last two lines in the above equation were dealt with in section 4.2.2. Here, we briefly

explain why the first two lines are finite. In the first term, we integrate the d̄4 away from

∆4. If even one d̄ is integrated to external leg 1, the term becomes finite. So we focus on

the case where the four d̄’s move to the other internal leg. This reads

[

∆1,
d̄4

∂2
−

∆2

]

?

[

d̄4∆3,
1

∂2
−

∆4

]

?

, (E.3)

In terms of momenta, the first line of (E.2) is now

(

1

q2
−

1

l2−
− 1

q2
−

1

k2
−

)

[∆1, d̄
4∆2]?[d̄

4∆3,∆4]? . (E.4)

Momentum conservation gives

k = p + q − l , k = −l for lÀ p, q , (E.5)

which implies that the divergent part of (E.4) vanishes. The proof of finiteness for the

second line in (E.2) follows from similar arguments.

References

[1] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B

121 (1977) 77;

F. Gliozzi, J. Scherk and D. Olive, Supersymmetry, supergravity theories and the dual spinor

model, Nucl. Phys. B 122 (1977) 253.

[2] L.V. Avdeev, O.V. Tarasov and A.A. Vladimirov, Vanishing of the three loop charge

renormalization function in a supersymmetric gauge theory, Phys. Lett. B 96 (1980) 94;

M.T. Grisaru, M. Rocek and W. Siegel, Zero three loop beta function in N = 4 super

Yang-Mills theory, Phys. Rev. Lett. 45 (1980) 1063;

M.F. Sohnius and P.C. West, Conformal invariance in N = 4 supersymmetric Yang-Mills

theory, Phys. Lett. B 100 (1981) 245;

W.E. Caswell and D. Zanon, Zero three loop beta function in the N = 4 supersymmetric

Yang-Mills theory, Nucl. Phys. B 182 (1981) 125;

P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous ultraviolet cancellations in

supersymmetry made manifest, Nucl. Phys. B 236 (1984) 125.

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB121%2C77
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB121%2C77
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB122%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB96%2C94
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C45%2C1063
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB100%2C245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB182%2C125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB236%2C125


J
H
E
P
0
1
(
2
0
0
7
)
0
4
6

[3] S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl.

Phys. B 213 (1983) 149.

[4] L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4 Yang-Mills

theory, Phys. Lett. B 123 (1983) 323.

[5] P.C. West, The yukawa beta function in N = 1 rigid supersymmetric theories, Phys. Lett. B

137 (1984) 371;

A. Parkes and P.C. West, Finiteness in rigid supersymmetric theories, Phys. Lett. B 138

(1984) 99;

D.R.T. Jones and L. Mezincescu, The chiral anomaly and a class of two loop finite

supersymmetric gauge theories, Phys. Lett. B 138 (1984) 293;

S. Hamidi, J. Patera and J.H. Schwarz, Chiral two loop finite supersymmetric theories, Phys.

Lett. B 141 (1984) 349;

S. Hamidi and J.H. Schwarz, A realistic finite unified theory?, Phys. Lett. B 147 (1984) 301;

W. Lucha and H. Neufeld, Finiteness of quantum field theories and supersymmetry, Phys.

Lett. B 174 (1986) 186; Finite quantum field theories, Phys. Rev. D 34 (1986) 1089;

D.R.T. Jones, Coupling constant reparametrization and finite field theories, Nucl. Phys. B

277 (1986) 153;

A.V. Ermushev, D.I. Kazakov and O.V. Tarasov, Finite N = 1 supersymmetric grand unified

theories, Nucl. Phys. B 281 (1987) 72;

X.-d. Jiang and X.-j. Zhou, A criterion for existence of finite to all orders N = 1 SYM

theories, Phys. Rev. D 42 (1990) 2109; Finite N = 1 supersymmetric theories of SU(N),

Phys. Lett. B 197 (1987) 156; Finite N = 1 supersymmetric theories of classical groups,

Phys. Lett. B 216 (1989) 160;

D.I. Kazakov, Finite N = 1 SUSY gauge field theories, Mod. Phys. Lett. A 2 (1987) 663;

O. Piguet and K. Sibold, Nonrenormalization theorems of chiral anomalies and

finiteness,Phys. Lett. B 177 (1986) 373; Nonrenormalization theorems of chiral anomalies

and finiteness in supersymmetric Yang-Mills theories, Int. J. Mod. Phys. A 1 (1986) 913;

C. Lucchesi, O. Piguet and K. Sibold, Necessary and sufficient conditions for all order

vanishing beta functions in supersymmetric Yang-Mills theories, Phys. Lett. B 201 (1988)

241;

N. Marcus and A. Sagnotti, The ultraviolet behavior of N = 4 Yang-Mills and the power

counting of extended superspace, Nucl. Phys. B 256 (1985) 77.

[6] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional

N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121].

[7] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[8] D. Berenstein and R.G. Leigh, Discrete torsion, AdS/CFT and duality, JHEP 01 (2000) 038

[hep-th/0001055].

[9] O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of N = 4 SYM

and type-IIB supergravity on AdS5 × S5, JHEP 06 (2002) 039 [hep-th/0205090].

[10] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086].

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB213%2C149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB213%2C149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB123%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB137%2C371
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB137%2C371
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB138%2C99
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB138%2C99
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB138%2C293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB141%2C349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB141%2C349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB147%2C301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB174%2C186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB174%2C186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD34%2C1089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB277%2C153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB277%2C153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB281%2C72
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD42%2C2109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB197%2C156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB216%2C160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA2%2C663
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB177%2C373
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA1%2C913
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB201%2C241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB201%2C241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB256%2C77
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C95
http://arxiv.org/abs/hep-th/9503121
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://jhep.sissa.it/stdsearch?paper=01%282000%29038
http://arxiv.org/abs/hep-th/0001055
http://jhep.sissa.it/stdsearch?paper=06%282002%29039
http://arxiv.org/abs/hep-th/0205090
http://jhep.sissa.it/stdsearch?paper=05%282005%29033
http://arxiv.org/abs/hep-th/0502086


J
H
E
P
0
1
(
2
0
0
7
)
0
4
6

[11] D.Z. Freedman and U. Gursoy, Comments on the beta-deformed N = 4 SYM theory, JHEP

11 (2005) 042 [hep-th/0506128].

[12] G.C. Rossi, E. Sokatchev and Y.S. Stanev, New results in the deformed N = 4 SYM theory,

Nucl. Phys. B 729 (2005) 581 [hep-th/0507113]; On the all-order perturbative finiteness of

the deformed N = 4 SYM theory, Nucl. Phys. B 754 (2006) 329 [hep-th/0606284].

[13] S. Penati, A. Santambrogio and D. Zanon, Two-point correlators in the beta-deformed N = 4

SYM at the next-to-leading order, JHEP 10 (2005) 023 [hep-th/0506150];

A. Mauri, S. Penati, A. Santambrogio and D. Zanon, Exact results in planar N = 1

superconformal Yang-Mills theory, JHEP 11 (2005) 024 [hep-th/0507282];

A. Mauri et al., On the perturbative chiral ring for marginally deformed N = 4 SYM theories,

JHEP 08 (2006) 072 [hep-th/0605145].

[14] V.V. Khoze, Amplitudes in the beta-deformed conformal Yang-Mills, JHEP 02 (2006) 040

[hep-th/0512194].

[15] L. Brink, O. Lindgren and B.E.W. Nilsson, N=4 Yang-Mills theory on the light cone, Nucl.

Phys. B 212 (1983) 401.

[16] A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily

extended supermultiplets, Nucl. Phys. B 227 (1983) 41.

[17] S. Ananth, Ph.D. Thesis, ISBN: 0542303965 (2005).

[18] S. Ananth, L. Brink and P. Ramond, Oxidizing super Yang-Mills from (n = 4,

(N = 4), d = 4) → (N = 1, d = 10), JHEP 07 (2004) 082 [hep-th/0405150].

[19] S. Ananth, L. Brink, S.-S. Kim and P. Ramond, Non-linear realization of PSU(2,2—4) on the

light-cone, Nucl. Phys. B 722 (2005) 166 [hep-th/0505234].

[20] L. Brink and A. Tollsten, N = 4 Yang-Mills theory in terms of N = 3 and N = 2 light cone

superfields, Nucl. Phys. B 249 (1985) 244.

[21] S. Ananth, Theories with memory, JHEP 12 (2005) 010 [hep-th/0510064].

[22] A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory:

compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162];

V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030

[hep-th/9903205];

N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032

[hep-th/9908142];

N. Seiberg, Noncommutative superspace, N = 1/2 supersymmetry, field theory and string

theory, JHEP 06 (2003) 010 [hep-th/0305248].

[23] M.T. Grisaru, W. Siegel and M. Rocek, Improved methods for supergraphs, Nucl. Phys. B

159 (1979) 429.

[24] S. Weinberg, High-energy behavior in quantum field theory, Phys. Rev. 118 (1960) 838.

[25] S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories

on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477];

T. Heinzl, Light-cone quantization: foundations and applications, Lect. Notes Phys. 572

(2001) 55 [hep-th/0008096].

[26] W. Zimmermann, The power counting theorem for Minkowski metric, Commun. Math. Phys.

11 (1968) 1.

– 27 –

http://jhep.sissa.it/stdsearch?paper=11%282005%29042
http://jhep.sissa.it/stdsearch?paper=11%282005%29042
http://arxiv.org/abs/hep-th/0506128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB729%2C581
http://arxiv.org/abs/hep-th/0507113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB754%2C329
http://arxiv.org/abs/hep-th/0606284
http://jhep.sissa.it/stdsearch?paper=10%282005%29023
http://arxiv.org/abs/hep-th/0506150
http://jhep.sissa.it/stdsearch?paper=11%282005%29024
http://arxiv.org/abs/hep-th/0507282
http://jhep.sissa.it/stdsearch?paper=08%282006%29072
http://arxiv.org/abs/hep-th/0605145
http://jhep.sissa.it/stdsearch?paper=02%282006%29040
http://arxiv.org/abs/hep-th/0512194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB212%2C401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB212%2C401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB227%2C41
http://jhep.sissa.it/stdsearch?paper=07%282004%29082
http://arxiv.org/abs/hep-th/0405150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB722%2C166
http://arxiv.org/abs/hep-th/0505234
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB249%2C244
http://jhep.sissa.it/stdsearch?paper=12%282005%29010
http://arxiv.org/abs/hep-th/0510064
http://jhep.sissa.it/stdsearch?paper=02%281998%29003
http://arxiv.org/abs/hep-th/9711162
http://jhep.sissa.it/stdsearch?paper=06%281999%29030
http://arxiv.org/abs/hep-th/9903205
http://jhep.sissa.it/stdsearch?paper=09%281999%29032
http://arxiv.org/abs/hep-th/9908142
http://jhep.sissa.it/stdsearch?paper=06%282003%29010
http://arxiv.org/abs/hep-th/0305248
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB159%2C429
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB159%2C429
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C118%2C838
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C301%2C299
http://arxiv.org/abs/hep-ph/9705477
http://arxiv.org/abs/hep-th/0008096
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C11%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C11%2C1


J
H
E
P
0
1
(
2
0
0
7
)
0
4
6

[27] G. Georgiou and V.V. Khoze, Instanton calculations in the beta-deformed AdS/CFT

correspondence, JHEP 04 (2006) 049 [hep-th/0602141];

C. Durnford, G. Georgiou and V.V. Khoze, Instanton test of non-supersymmetric

deformations of the AdS5 × S5, JHEP 09 (2006) 005 [hep-th/0606111];

G. Georgiou, V.V. Khoze and S. Kovacs, in preparation.

[28] M. Bianchi, M.B. Green, S. Kovacs and G. Rossi, Instantons in supersymmetric Yang-Mills

and D-instantons in IIB superstring theory, JHEP 08 (1998) 013 [hep-th/9807033];

N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Multi-instanton

calculus and the AdS/CFT correspondence in N = 4 superconformal field theory, Nucl. Phys.

B 552 (1999) 88 [hep-th/9901128].

[29] N. Dorey, T.J. Hollowood and S.P. Kumar, S-duality of the Leigh-Strassler deformation via

matrix models, JHEP 12 (2002) 003 [hep-th/0210239].

[30] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069

[hep-th/0503201].

[31] V. Niarchos and N. Prezas, Bmn operators for N = 1 superconformal Yang-Mills theories and

associated string backgrounds, JHEP 06 (2003) 015 [hep-th/0212111].

[32] D. Berenstein, V. Jejjala and R.G. Leigh, Marginal and relevant deformations of N = 4 field

theories and non-commutative moduli spaces of vacua, Nucl. Phys. B 589 (2000) 196

[hep-th/0005087].

[33] J.A. Minahan and K. Zarembo, The bethe-ansatz for N = 4 super Yang-Mills, JHEP 03

(2003) 013 [hep-th/0212208];

N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super

Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060];

N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B

670 (2003) 439 [hep-th/0307042].

– 28 –

http://jhep.sissa.it/stdsearch?paper=04%282006%29049
http://arxiv.org/abs/hep-th/0602141
http://jhep.sissa.it/stdsearch?paper=09%282006%29005
http://arxiv.org/abs/hep-th/0606111
http://jhep.sissa.it/stdsearch?paper=08%281998%29013
http://arxiv.org/abs/hep-th/9807033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB552%2C88
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB552%2C88
http://arxiv.org/abs/hep-th/9901128
http://jhep.sissa.it/stdsearch?paper=12%282002%29003
http://arxiv.org/abs/hep-th/0210239
http://jhep.sissa.it/stdsearch?paper=05%282005%29069
http://arxiv.org/abs/hep-th/0503201
http://jhep.sissa.it/stdsearch?paper=06%282003%29015
http://arxiv.org/abs/hep-th/0212111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB589%2C196
http://arxiv.org/abs/hep-th/0005087
http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://arxiv.org/abs/hep-th/0212208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB664%2C131
http://arxiv.org/abs/hep-th/0303060
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://arxiv.org/abs/hep-th/0307042

